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Abstract  

Chitosan is a glucosamine polymer produced by deacetylation of chitin 

from crustacean shells. The functional properties of chitosan, such as thickening, 

film-formation and antimicrobial activity, are related to its molecular weight and 

degree of acetylation (DA). High intensity ultrasonication has the potential to 

modify molecular weight of chitosan and thus alter or improve chitosan functional 

properties.  The objective of this research was to determine the DA and 

molecular weight of chitosan molecules as a function of sonication intensity and 

treatment time. 

High molecular weight shrimp chitosan was purified by alkaline 

precipitation and dialysis from aqueous solution. A 1 % (w/v) chitosan in 1 % (v/v) 

aqueous acetic acid was sonicated for 0, 1, 2, 10, 30, and 60 minutes at 25 °C. A 

Misonix 3000 ultrasonic homogenizer was used to sonicate 50 mL samples at 

power levels of 16.5, 28, and 35.2 W/cm2 with pulsed output (1 s sonication, 1 s 

break). The DA was determined by high performance liquid chromatography with 

photodiode array detector (HPLC-PDA), monitoring acetyl groups released after 

complete hydrolysis and deacetylation of the samples and by Fourier Transform 

InfraRed Spectroscopy with Attenuated Total Reflection (FTIR-ATR). Molecular 

weight was determined by measuring the intrinsic viscosity of sonicated 

solutions. 

The DA of purified chitosan was 21.5 %. Results indicated that neither 

power intensity nor sonication time deacetylated the chitosan molecules. 
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However, intrinsic viscosity of samples decreased exponentially with increasing 

sonication time. Reduction rates of intrinsic viscosity increased linearly with 

ultrasonic intensity. A first order kinetic reaction model of molecular weight decay 

as a function of sonication time was suggested and an Arrhenius-type 

relationship for the dependence of the reaction rate on the ultrasonic intensity 

was developed.  Our results confirm the hypothesis that high intensity 

ultrasonication can be utilized to reduce molecular weight of chitosan while not 

reducing the degree of acetylation.  
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1. Literature Review 

1.1. Introduction 

Chitin, an acetylated acetylglucosamine polymer, is the second most 

abundant polysaccharide in nature (Shahidi, Arachchi, & Jeon, 1999).  Chitin is 

found in the exoskeleton of crustaceans, insects’ cuticles, and fungal cell walls.  

Current procedures for chitin extraction involve harsh acid and base treatments 

to demineralize and deproteinize shrimp and crab shells. In order to produce 

chitosan, chitin is further deacetylated, usually with 10 N NaOH at 100 – 120 °C 

for several hours. However, the harsh treatments may influence the molecular 

weight and viscosity of the final chitosan product (Varum, Ottoy, & Smidsrod, 

2001).   

Chitin and chitosan are biodegradable, nontoxic compounds with multiple 

applications in the food, agricultural, pharmaceutical and chemistry industry. 

Current uses of chitin and chitosan include wastewater treatment, cosmetics, 

paper and textiles, biomedicine, seed treatment, antimicrobials, and formation of 

biodegradable films (Shahidi et al., 1999). The physical properties of the chitin 

and chitosan affect the potential uses. For instance, low molecular weight 

chitosan has low viscosity which limits its application.  Also, oligomers of chitosan 

do not form films. Furthermore, the antimicrobial affect of chitosan is stronger if 

the molecular weight is greater than 100 kDa and has high degree of 

deacetylation (No, Park, Lee, & Meyers, 2002). 
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High intensity ultrasound is a novel technology that has the potential to 

assist in the extraction and production of chitosan.  Through compressional and 

shear waves at large intensities and consequent cavitation of microscopic 

bubbles, ultrasound has the potential to be used in chitosan modifications, 

allowing more control over the product properties while creating a more 

environmentally friendly process.  

 

1.2. Molecular Properties of Chitosan 

Chitosan has a chemical structure of 2-acetamido-2-deoxy-β-D-glucose 

monomers attached via β (1 4) linkages (Figure 1). The chemical 

characteristics of chitosan may be varied as required for a particular application; 

with the most important being the degree of acetylation (DA) or degree of 

deacetylation (DDA) and the molecular weight (Rabea, Badawy, Stevens, 

Smagghe, & Steurbaut,  2003).  

Dependent upon source, there are three main packing arrangements of 

chitin molecules: α-chitin (anti-parallel arrangement), β-chitin (parallel 

arrangement) and γ-chitin (mixed arrangement – two chains parallel for each 

chain anti-parallel).  The most stable and most abundant form found in nature is 

α-chitin (Muzzarelli, 1977).  The packing arrangement of chitin will affect the 

crystallinity of the produced chitosan and the degree of acetylation (Jaworska, 

Sakurai, Gaudon, & Guibal, 2003).  Intensity of crystallization and the degree of 

acetylation in turn may have significant effects on chitosan functional properties,  
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such as antimicrobial activity, viscosity, and gel and fiber formation (Jaworska et 

al., 2003).  

Chitin and chitosan differ in the DA of the molecule.  Generally, chitin has 

a DA of greater than 70 %.  High levels of acetyl groups and extensive 

crystallization make chitin insoluble in water and common solvents.  Most 

commercial chitosans have a DA of less than 30 % and are soluble in aqueous 

acidic solvents.  Interestingly, molecules with equal fractions of acetylated and 

nonacetylated glucosamine monomers are easily soluble in water (Muzzarelli, 

1977). Commercial chitosan typically has a maximum molecular weight in the 

range of 100 to 800 kDa.  The chemical structure differences of chitin, chitosan 

and cellulose can be seen in Figure 1. 

 

1.2.1. Sources of Chitosan 

The biological origin of chitin that is deacetylated into chitosan strongly 

affects the molecular properties of the chitosan.  The current main commercial 

sources of chitosan are shrimp and crab shells.  Shrimp and crab shell waste has 

a production of approximately 109 – 1010 tons of waste per year worldwide (Peter, 

1995).  Methods of extracting chitin from fungal sources have the potential of 

commercial application (Muzzarelli, 1977). 

 

1.2.2. Extraction of Chitin  

Commercial production of chitin involves the use of harsh acids and bases 

at high temperatures for long periods of time.  Shrimp and crab shells contain 17 
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– 32 % chitin, 17 – 42 % protein, 1 – 14 % pigments, and 41 – 46 % ash, mainly 

calcium (Shahidi and Synowiecki, 1991).  The process begins with drying and 

grinding of the shells and is followed by two main steps: demineralization and 

deproteinization. Demineralization generally involves the use of acids including 

but not limited to: hydrochloric acid, nitric acid, sulfuric acid, acetic acid, and 

formic acid with hydrochloric acid being the preferred on a commercial scale.  

The typical concentration is between 0.275 and 2 M for 1 to 48 hours and 

temperatures ranging from 0 to 100 °C (Roberts, 1992).  Deproteinization of 

chitin generally involves the use of an alkaline treatment.  Demineralized material 

is treated with 1 M aqueous solutions of NaOH for 1 to 72 hours at temperatures 

ranging from 65 to 100 °C (Roberts, 1992).  

Percot, Viton, and Domard (2003) optimized the extraction of chitin from 

shrimp shells, specifically, with the objective of creating a higher quality chitin 

with the highest molecular weight possible and the lowest amount of 

deacetylation.  Acidic conditions applied for demineralization may cause 

depolymerization, whereas the deproteinization process with alkaline treatment 

can lead to a lower degree of acetylation.  The authors optimized the 

demineralization process using 0.25 M HCl at a solid-to-solvent ratio of 1/40 (w/v) 

and a reaction time of 15 minutes which successfully removed acetyl groups and 

yielded higher molecular weight chitin.  The use of 1 M NaOH with a solid-to-

solvent ratio of 1/15 (w/v) at temperatures ranging from ambient temperature to 

70 °C did not affect the degree of acetylation.  However, when deproteinization 
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was conducted at temperatures above 70 °C, the rate of deacetylation of the 

chitin increased. 

 

1.2.3. Methods of Deacetylation of Chitin to Chitosan 

Deacetylation of chitosan can take place in one of two ways depending on 

the processing conditions.  Homogeneous deacetylation creates a random 

distribution of acetyl groups along the polymer while heterogeneous 

deacetylation creates a block distribution of acetyl groups.  Traditional means of 

deacetylation are heterogeneous and are carried out with 10 N or higher sodium 

or potassium hydroxide at 100 – 150 °C for several hours (Muzzarelli, 1977; No 

and Mayers, 1997).  Under strong alkali conditions, the high temperatures lead to 

hydrolysis of glycosidic bonds.  To avoid depolymerization, chitin is deacetylated 

at 30 – 60 °C for 20 to 144 hours while keeping the alkali concentration at 45 % 

(Alimuniar & Zainuddin, 1992). 

 Alternative methods of deacetylation have been investigated.  

Deacetylation of chitin by pressure of 15 psi in 45 % sodium hydroxide for 30 min 

resulted in chitosan with a degree of deacetylation of 90.4 % with a higher 

viscosity compared to conventional methods (No, Cho, Kim & Meyers, 2000).   

Another alternative method was developed through homogeneous 

deacetylation (Nemtsev, Gamzazade, Rogozhim, Bykova, & Bykov, 2002).  Dry 

or thawed chitin was mechanically disintegrated and suspended in a 13 – 24 % 

NaOH aqueous solution at a concentration of 1 – 10 %.  The alkaline suspension 

of chitin was frozen in a cryostat and thawed at room temperature.  Chitin 
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underwent pronounced swelling and formed an alkaline solution.  For 

deacetylation, the alkaline chitosan solution was kept at room temperature or 

mildly heated.  The solution lost its fluidity and formed a gel.  This gel was 

mechanically disintegrated into 3 – 5 mm particles and washed with distilled 

water to remove alkali.  Chitin was therefore converted to chitosan, which was 

dried at 50 – 55 °C.  Deacetylation under homogenous conditions allowed for 

compounds with specific DA’s while retaining high molecular weight 

characteristics and the ability to control the process through temperature and 

temporal factors (Nemtsev et al., 2002). 

 However, the common methods used for deacetylation cause limited 

hydrolysis of the chitosan molecule.  A commercial chitosan with a DDA 75 % in 

powder form had lower molecular mass than that of the original chitin, indicating 

that depolymerization occurred to some extent during the manufacturing process 

for preparing chitosan (Hasegawa, Isogai, & Onabe, 1994).   

Varum, Ottoy, and Smidsrod (2001) found that using concentrated sulfuric 

acid for hydrolysis, the rate of hydrolysis is more than 10 times higher than the 

rate of deacetylation.  Furthermore, the extensively deacetylated chitosans were 

hydrolyzed at a lower rate by acid compared to the more acetylated chitosans 

(Varum et al., 2001). 

 

1.3. Determination of Physicochemical Properties of Chitosan 

Characteristics of commercially produced chitosan are highly variable with 

regard to physicochemical properties.  The properties discussed here, degree of 
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acetylation and molecular weight, are dependent on the extraction and 

processing methods used in obtaining chitosan.   

 

1.3.1. Degree of Acetylation 

Numerous methods have been proposed for determining the DA of chitin 

and chitosan.  Published research has explored the use of HPLC-PDA (Niola, 

Basora, Chornet, & Vidal, 1993), IR spectroscopy (Duarte, Ferreira, Marvao, & 

Rocha, 2002; Neugebauer, 1989; Rathke & Hudson, 1993; Shigemasa, Matsura, 

Sashiwa, & Saimoto, 1996), conductimetric titration (Li, Revol, & Marchessault, 

1997a), NMR (Kasaai, Charlet, & Arul, 2000a; Li et al., 1997a; Signini, 

Desbrieres, & Campana Filho, 2000), and UV spectroscopy (Pedroni, Gschaider, 

& Schulz, 2003).  Each published method has presented advantages and 

disadvantages regarding the sample preparation, accuracy, and reproducibility.  

Generally, the biggest challenge in method development presents achieving 

uniform accuracy in the entire range of DA from 0 % being fully deacetylated 

chitosan and 100 % being fully acetylated chitin.   

Acid hydrolysis of chitosan, e.g. with sulfuric and oxalic acid, liberates 

acetyl groups from the chitosan or chitin molecule.  The acetic acid produced can 

then be determined through the use of high performance liquid chromatography 

(HPLC) with a spectrophotometric or photodiode array detector (PDA).  The 

method proposed by Niola, Basora, Chornet and Vidal (1993) is based on the 

hydrolytic reaction. The method is advantageous because of its simplicity but 

shows little reproducibility and is not accurate for molecules with lower levels of 
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acetylation.  Furthermore, the limited accessibility of acetyl groups present in 

highly crystallized chitin towards oxalic and sulfuric acid was assumed to be the 

cause of underestimation of the DA in chitin (Niola et al., 1993).   

The most widely used method for the determination of the DA is based on 

Fourier Transformation InfraRed Spectroscopy (FTIR).  Several papers have 

focused on optimization of the methods and peak areas used in the calculation.  

In the study by Duarte, Ferreira, Marvao, and Rocha (2002), FTIR was used to 

determine the DA of standards with a wide range of DA and the results were 

correlated with those obtained by Nuclear Magnetic Resonance Spectroscopy 

(NMR).  Shigemasa, Matsura, Sashiwa, and Saimoto (1996) compared several 

published FTIR methods and determined that only few produce accurate values 

over the entire range of DA, from 0 to 100 %.  Advantages of FTIR include simple 

sample preparation and recovery of sample after analysis, while variability due to 

impurities and environmental factors present the major disadvantages.  

Furthermore, commonly used as a reference, the peak at 3450 cm-1 varies in 

intensity due to the effect of adsorbed water (Domszy & Robers, 1985). 

Near infrared spectroscopy (NIR) has also been investigated as a method 

for the determination of the DA (Rathke & Hudson, 1993).  NIR has been found 

to be valid from 40 – 100 % N-deactylation (DDA) but had low accuracy for chitin 

samples (Rathke & Hudson, 1993).   

The traditional method for determination of the degree of acetylation is the 

use of titration with picric acid.  The method has been shown to be reliable for a 

large spectrum of substrates, relatively fast, simple and less expensive than 
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other methods available (Neugebauer, 1989).  The advantage of the titration 

method is the simplicity but disadvantages are the lengthy process and high 

variability. 

Nuclear Magnetic Resonance Spectroscopy provides the average amino 

group content of the sample which directly correlates to the DA (Li et al 1997a).  

Typically, NMR is used as the reference method to which other methods are 

compared.  However, although it appears that NMR provides an accurate 

measurement of DA, high cost of equipment limits its use. 

Pedroni, Gachaider, and Schulz (2003) successfully used ultraviolet (UV) 

spectroscopy to accurately determine the DA of chitosan.  Measuring the spectra 

of prepared samples at 201 nm, UV spectroscopy provides a simple and rapid 

technique.    Problems with the method are that both chitosan and N-

acetylglucosamine show unique absorbance peaks close to that of acetic or 

hydrochloric acid, traditionally used as solvents (Pedroni et al., 2003). 

It should be kept in mind that the variability of the data obtained by 

different authors may not be due to the method applied.  As a biological polymer, 

chitosan is highly variable firstly because of the nature of its parent molecule, 

chitin, but also due to the applied extraction method and deacetylation process.   

   

1.3.2. Molecular Weight 

Molecular weight directly impacts the functionality of chitosan in all 

applications.  Several methods have been employed to determine the molecular 

weight of both chitin and chitosan. Molecular weight is important in the solubility 
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of chitosan since longer chains are less soluble than shorter chains.  Current 

published methods include size exclusion chromatography (Kasaai et al., 2000a; 

Mislovičová, Masárová, Bendžálová, Šoltés, & Machová, 2000), multiple angle 

light scattering (Chen & Tsaih, 1998; Kasaai et al., 2000a; Terbojevich, Carraro, 

& Cosani, 1988), intrinsic viscosity (Chen & Tsaih 1998; Kasaai et al., 2000a; 

Kasaai, Charlet, & Arul, 2000b), and membrane osmometry (Kasaai et al., 

2000a).   

One of the most common methods in determining molecular weight is size 

exclusion chromatography.  Weight average degree of polymerization (dp) and 

number average dp can be calculated using a calibration curve obtained for 

pullulan standards, on the assumption that pullulan and chitin with equal dp have 

hydrodynamic equal volumes (Hasegawa et al., 1994).  Chitin and chitosan 

molecular weights cannot be directly compared because no solvent systems can 

dissolve both chitin and chitosan (Hasegawa et al., 1994).  

Light scattering is the use of multiple angles of light that are diffracted by 

the sample.  This diffraction of light is measured and can be used to determine 

the molecular weight.  Zimm plots are created from multiple measurements at 

multiple dilutions and the molecular weight is determined from the plot (Chen & 

Tsaih, 1998).  Though accurate, methodology is complex and results are 

dependent on the purity of the sample.  Samples at high concentrations can not 

be examined due to the high viscosity of the solutions. The low dn/dc values, 

used for the creating of the plots, cause a considerable error of ± 10 % in the 

determinations (Terbojevich et al., 1988). 
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Intrinsic viscosity is the viscosity of a solution with infinitely small amounts 

of solute. Intrinsic viscosity of a polymer solution is related to the polymer 

molecular weight according to the Mark-Houwink (MH) equation (Lapasin & Pricl 

1999).  The MH equation is [ ] a
vKM=η  where [ ]η  is the intrinsic viscosity, Mv the 

viscosity-average molecular weight, and K and a are constants for the given 

solute-solvent system and temperature.  The salt concentration can drastically 

influence the intrinsic viscosity of polyelectrolytes such as chitosan, particularly at 

low salt levels, therefore the solvent must be taken into consideration when 

determining molecular weight through the use of intrinsic viscosity (Signini et al., 

2000).  Kasaai, Charlet, and Arul (2000b) found that intrinsic viscosity or solution 

viscosity of chitosans can be estimated within reasonable error in the semi-dilute 

region using a master curve. 

 

1.4. Current Application of Chitosan 

The use of chitosan is limited because of its insolubility in water, high 

viscosity, and tendency to coagulate with proteins at high pH (Rabea et al., 

2003).  Even with limited use, chitosan has been applied as an antimicrobial 

agent, biodegradable film, waste recovery, waste water purification, additive to 

foods, nutritional additive, and medicinal purposes.   

As an antimicrobial, chitosan has been found to be effective against 

yeasts, molds, and bacteria.  The antimicrobial action of chitosan is influenced by 

intrinsic factors such as type of chitosan, the degree of chitosan polymerization, 
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the host, the natural nutrient constituency, the chemical or nutrient composition of 

the substrates or both, and the environmental conditions (Rabea et al., 2003).   

Chitosan can also be used as an indicator of mold contamination in foods.  

Chitin is a main component of molds and the degree of fungal contamination in 

tomato process can be determined by a chemical assay for chitin (Bishop, 

Duncan, Evancho, & Young, 1982).  The chemical assay has also been used to 

determine the fungal contamination in stored corn and soybean seeds (Donald & 

Mirocha, 1977). 

 Chitosan can form biodegradable films that good barriers to the 

permeation of oxygen, but with relatively low water vapor barrier characteristics 

(Butler, Vergano, Testin, Bunn, & Wiles, 1996).  Mechanical properties are 

comparable to other medium strength commercial polymer films on the market 

(Butler et al., 1996).  Only slight changes in mechanical or barrier characteristics 

of the films occur with storage time (Butler et al., 1996).  Application of chitosan 

coating on cucumber and pepper fruits reduced transpiration losses and delayed 

the ripening (El Ghaouth, Arul, & Ponnampalam, 1991).  Chitosan coatings have 

also been applied to extend the post-harvest shelf life of fruits and vegetables 

(Jiang & Li, 2001).  For example, the application of chitosan coating delayed the 

change in eating quality, reduced respiration rate and weight loss, and partially 

inhibited the increase of polyphenoloxidase activity of the longan fruit (Jiang & Li, 

2001).  The delay of ripening implies that the chitosan coating may form a 

protective barrier on the surface of the fruit and reduce the supply of oxygen to 

the fruit (Jiang & Li, 2001). 
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Chitosan has also been applied to the recovery of waste in processing 

plants.  A study conducted by Pinotti, Bevilacqua, and Zaritzky (1997) looked at 

the effect of sodium chloride concentration on the destabilization and flocculation 

of oil in oil in water emulsions.  The longer the surfactant chain length, the 

greater the tendency toward polyelectrolyte association, therefore the greater the 

chitosan dose to reach zero change in an oil in water emulsion (Pinotti et al., 

1997).  To increase chitosan reactivity, agitation time was reduced resulting in 

lower initial charges and lower chitosan doses to reach flocculation (Pinotti et al., 

1997).  On a commercial scale, chitosan has been shown to be an effective 

coagulating agent for the reduction of suspended solids in vegetable processing 

waste water (Bough, 1975). 

In water purification, chitosan acts as a chelating agent.  The high nitrogen 

content of chitosan makes it a good chelating agent for the removal of metal ions 

(Rabea et al., 2003).  The influence of chitosan chain packing and crystallinity is 

an important parameter in the ability of chitosan to sorb metal ions, therefore the 

properties of the chitosan must be considered (Jaworska et al., 2003).  

Tyrosinase containing chitosan gels have been used to remove phenols from 

process waste streams (Sun & Payne, 1996).  These gels can potentially offer a 

non capital intensive means to selectively remove phenols from process streams 

for waste minimization (Sun & Payne, 1996).   

Though not yet approved as a food additive in the United States, many 

studies have been conducted to look at the affect of chitosan in food systems.  

The addition of chitosan to tofu increased the shelf-life without affecting 
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microstructure or sensory (Kim & Han, 2002).  Chitosan has also been used in 

cheese whey protein to remove lipids (Hwang & Damodaran, 1995).  Addition of 

chitosan provided a cost effective method that required only a small amount of 

chitosan and created a high quality whey protein.  Chitosans have a good affinity 

to phenolic compounds, which are the main components involved in the wine 

oxidation processes responsible for browning in white wines (Spagna, Pifferi, 

Rangoni, Mattivi, Nicolini, & Palmonari, 1996).  The addition of chitosans to white 

wines did not adversely affect the sensory quality of the wine but appeared to 

give a better product than traditional means of removing phenolic compounds 

from the wine (Spagna et al., 1996).  

 Chitosan has been shown to reduce cholesterol levels in animals.  In a 

study with rats, chitosan increased lipid excretion in the rat’s feces (Deuchi, 

Kanauchi, Imasato, & Kobayashi, 1994).  The mode of action in reducing 

cholesterol involves the chitosan dissolving in the stomach to form an emulsion 

with intragastric oil droplets that begin to precipitate in the small intestines at pH 

6.0 – 6.5.  As the numerous chains of polysaccharides start to aggregate, they 

would entrap fine oil droplets in their matrices, pass through the lumen and 

empty into the feces.  These features imply that a suitable chitosan intake would 

be useful to control overnutrition and to prevent disease (Deuchi et al., 1994).  In 

adding 2 % chitosan to chicken feed, an increase in total cholesterol and 

triacylglycerol values in chicken livers was suppressed.  An increase in the 

values of cholesterol, triacylglycerol, and free fatty acid in hen’s thigh muscles 

was also suppressed with 2 % chitosan feed indicating a possible production of 
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low-cholesterol meats (Hirano et al., 1990).  Chitosan is safe and digestible in 

domestic animals.  It can be useable as an ingredient at an appropriate dosage 

for domestic animal feeds, but the safety dosage varies with animal (Hirano et 

al., 1990). 

Chitosan can be used as an indicator of lipid oxidation.  When exposed to 

malonaldehyde, a product of lipid oxidation, chitosan forms fluorescence and can 

be used to detect lipid oxidation in foods using fluorescence spectrophotemetry 

(Weist & Karel, 1992). 

In the medical field, chitosan has been evaluated for several applications.  

Chitin and chitosan have shown excellent wound healing in animals (Tanioka et 

al., 1993), but the degree of acetylation is an important factor affecting wound 

healing properties (Oksmoto et al., 1992).  In drug delivery systems, chitosan is 

able to significantly enhance the immune response of nasally administered 

vaccines for influenza, pertussis, and diphtheria (Illum, Jabbal-Gill, Hinchcliffe, 

Fisher, and Davis, 2001).   

 

1.5. High-intensity Ultrasound 

1.5.1. Introduction and Definition of Power Ultrasound 

Ultrasonic waves are similar to sound waves, but they have frequencies 

that are too high to be detected by the human ear, that is > 16 kHz.  Ultrasonic 

waves are generated by the application of a sinusoidal force to the surface of a 

material.  There are two classes of ultrasonic radiation: low intensity (< 1 W/cm2) 

and high intensity (typically 10-1000 W/cm2). 
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Low-intensity ultrasound uses low power levels that are so small the 

ultrasonic wave causes no physical or chemical alterations in the properties of 

the material through which the wave passes, meaning it is non-destructive.  The 

most common application of low-intensity ultrasound is as an analytical technique 

for providing information about the physicochemical properties of foods 

(McClements, 1995).  Ultrasound waves with low intensities are primarily used 

for diagnostic purposes (Povey, 1998). 

High-intensity ultrasounds apply such large forces they cause physical 

disruption of the material to which they are applied and can promote certain 

chemical reactions such as oxidation (Povey, 1998).  When ultrasound of a 

frequency > 500 kHz is applied, radical reactions may become more pronounced 

(Portenlanger & Heusinger, 1997). 

 

1.5.2. Physics of Ultrasounds 

Ultrasound waves are of mechanical nature with frequencies between 16 

kHz and 100 kHz (Cains, Martin, & Price, 1998; Mason & Cordmas, 1996; 

Mason, 1997).  Ultrasound is similar to electromagnetic radiation because it 

obeys the general wave equation and travels at a velocity that depends upon the 

properties of the medium (Mason, 1992; Povey, 1998).  As ultrasound travels 

through a mass medium, it compresses and shears the molecules in the medium 

(Price, White, & Clifton, 1995).   

Propagation of compression and shear waves at large intensities create 

shock waves.  During the process, the ultrasonic wave attains a “saw tooth” 
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shape at a finite distance from the ultrasonic transducer.  At the edge of the “saw 

tooth” a decrease in pressure occurs and results in the spontaneous formation of 

microscopic bubbles.  As these bubbles collapse, they produce highly turbulent 

flow conditions and extremely high pressures and temperatures.  Temperatures 

of up to 5000 K and pressures up to 1200 bar have been calculated (Bernstein, 

Zakin, Flint, & Suslick, 1996).  The effect of bubbles forming and collapsing is 

known as cavitation (Mason, 1992; Price, 1993; Leighton, 1995; Mason & 

Cordmas, 1996; Mason, 1997).  The formation and collapse of bubbles occurs 

over a few microseconds (Hardcastle et al., 2000).  The size of bubbles is 

inversely proportional to the frequency of the applied sound wave meaning that 

the larger the frequency the smaller the bubbles formed (Suslick, Casadonte, 

Green, & Thompson, 1987; Suslick & Price, 1999). 

 

1.5.3. Sonochemistry of Carbohydrates 

The application of high-intensity ultrasound can lead to the 

depolymerization of large macromolecules (> 100 kDa) due to mechanical effects 

associated with cavitation (Crum, 1995; Mason & Cordmas, 1996; Mason, 1997; 

Stephanis, Hatiris, & Mourmouras, 1997).  In polysaccharides, high intensity 

sonication treatment has been proven as reproducible and convenient in 

obtaining lower molecular weight fragments with the same repeating unit as the 

parent molecule without loss of material (Szu, Zon, Schneerson, & Robbins, 

1986). 
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The treatment of dextrans with high intensity ultrasounds resulted in a 

reduction and a narrowing of the molecular weight distribution of the 

depolymerized products (Szu et al., 1986).  Cleavage of linkages in the dextran 

molecules has been shown to be nonselective, meaning that the cleavage does 

not occur due to a particular chemical bond.  Therefore polysaccharides of 

diverse structures can be depolymerized by high intensity ultrasounds at a similar 

rate and to a similar finite size (Szu et al., 1986).  The rate of depolymerization of 

the molecules can be monitored by measurement of the intrinsic viscosity of the 

reaction mixture (Szu et al., 1986). Also, since the mechanism of cleavage is 

related to the mechanical effects associated with cavitation, the rate of 

depolymerization is related to the viscosity of the solvent (Szu et al., 1986).  In 

the case of dextrans, the immobilization of the molecule by the high viscosity 

solvent of glycerol enhances the effect of the high intensity sonication induced 

bending force (Szu et al., 1986).  

Further research has been conducted with high intensity sonication 

treatments on agarose and carrageenan.  Ultrasonic degradation of agarose and 

carrageenan during short periods follows first-order kinetics and is dependent of 

molecular size (Lii, Chen, Yeh, & Lai, 1999).  It was also found that the inherent 

stability of the glycosidic linkages, concentration, conformation and viscosity of 

the polysaccharides may influence the degradation mechanism of agarose and 

carrageenan (Lii et al., 1999).   

The effect of high intensity ultrasounds on chitin and chitin complexes has 

been studied.  Sonication can be used to degrade the (1 4)-β-linkage and effect 
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the deacetylation of chitinous material (Mislovicová et al., 2000).  Through the 

application of high intensity sonication on water-insoluble chitin-glucan, a 

cleavage of water-soluble fragments with high chitin content was achieved from 

the surface of swollen chitin-glucan particles.  These fragments under further 

sonication formed aggregates of high molecular weight (approximately 600 kDa) 

which at higher concentrations can partially coagulate (Mislovicová et al., 2000).  

In carboxymethylated chitin-glucan extracted from Aspergillus niger the efficiency 

of the ultrasonic treatment was higher with less concentrated solutions 

(Machova, Kvapilova, Kogan, & Sandula, 1999).  The efficiency was not only 

higher in lower concentrations but there was also a greater dp in ice-cooled 

samples in comparison with the un-cooled ones (Machova et al., 1999).  

Sonication of chitosan hydrochloride for up to 10 minutes showed that it was 

randomly degraded and that negligible changes in the molecular weight 

distribution occurred in the molecular weight after sonication (Signini et al., 

2000).  When synthetic long-chain polymer solutions were subjected to an 

ultrasonic treatment, the molecules underwent a controlled degradation with 

reduced molecular weight (Price, 1993). 

 

1.5.4. Current Application of Ultrasound in the Food Industry 

Both low and high intensity ultrasound treatments have been evaluated for 

use in the food industry.  Low intensity sonication is used for analytical purposes 

while high intensity sonication is used to aid in fermentation, analysis of 
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polysaccharide content, extractions, deactivation of enzymes and degradation of 

food components (McClements, 1995). 

The most common application of low-intensity ultrasound is as an 

analytical technique for providing information about the physicochemical 

properties of foods, such as composition, structure, physical state, and flow rate 

(McClements, 1995). The physicochemical properties of food materials can be 

determined through measurements of the adsorption and scattering of 

ultrasound.  Information that can be determined includes concentration, viscosity, 

molecular relaxation and microstructure (McClements, 1995). 

High intensity sonication can be used for multiple purposes in the food 

industry, one of which is aiding in the fermentation of milk.  Sonicated 

fermentation is a promising process for manufacturing low-lactose fermented milk 

(Wang & Sakakibara, 1997).  In this process, the degree of lactose hydrolysis 

directly corresponds to the amounts of β-galactosidase released (Wang & 

Sakakibara, 1997).    In the case of fermentation of biomass, low level 

ultrasounds can increase the rate of fermentation, but the economic value is 

much less compared to the traditional technique (Schläfer, Onyeche, Bormann, 

Schrödet, & Sievers, 2002). 

 High intensity sonication is also being used in the determination of the 

total polysaccharide content of foods.  The combination of high intensity 

ultrasounds with acid hydrolysis can be used to determine the total 

polysaccharide content in both environmental and food samples (Mecozzi, 

Acquistucci, Amici, & Cardarilli, 2002).  The ultrasound and treatment has been 



www.manaraa.com

 22

shown to be more accurate in the analysis of fruit samples because the partial 

degradation of fructose is avoided in the method (Mecozzi et al., 2002).   

 A sonication treatment has been shown to aid in the extraction of food 

components.  The extractability of polysaccharides from sage was enhanced by 

an ultrasound treatment (Hromádková, Ebringerová, & Valachovič, 1999).  High 

intensity ultrasound treatment has also been used to increase the extractability of 

corn bran hemicelluloses from Zea mays. L., a co-product generated by starch 

production (Ebringerová & Hromádková, 2002).  Application of high intensity 

ultrasounds in combination with an alkaline medium has been used in the 

extraction of lignin (three-dimensional macromolecule with high molecular weight 

in the range of 100 kDa used in paper industry) from wheat straw.  The 

application of ultrasounds led to an increased purity and yield making the 

treatment advantageous for commercial use (Sun & Tomkinson, 2002). 

 Sonication can be used in the deactivation of peroxidase in food.  The 

action of ultrasounds in combination with a conventional heat treatment is quite 

effective in deactivating peroxidase.  The efficiency of the treatment can be 

related to the ultrasound power density, the ultrasound power per unit area of tip 

of the probe and unit volume of liquid treated (De Gennaro, Cavella, Romano, & 

Masi, 1999).   

 The mechanical forces created during cavitation resulting from high-

intensity sonication are the basis for using the treatment in the degradation of 

food components.  Sonication treatment of xylan from corn cobs in an alkaline 

medium was shown to be more effective in the degradation of xylan than 
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traditional processes (Ebringerová, Hromádková, Hríbalová, & Mason, 1997).  In 

the case of pectin, high intensity sonication had a negative impact on its 

rheological properties (Seshadri, Weiss, Hulbert, & Mount, 2003).  With 

increased sonication time and intensity, the gel strength of pectin was reduced 

and the time of gelation was increased (Seshadri et al., 2003).   A benefit of the 

sonication treatment on pectin was that optical properties were improved.  Pectin 

solutions subjected to the ultrasonic treatment were less turbid making them 

more beneficial in a clear beverage application (Seshadri et al., 2003).  High 

intensity sonication has been used to decrease the molecular weight of polyvinyl 

alcohol.  The intrinsic viscosity of polyvinyl alcohol decreased with increasing 

sonication time.  The constant value indicates that there is a limiting molecular 

weight, below which chain scission does not occur (Taghizadeh & Mehrdad, 

2003).  The rate constant of ultrasonic degradation of polyvinyl alcohol 

decreased with increasing solution concentration (Taghizadeh & Mehrdad, 2003).  

With increased solution concentration, the viscosity increased which reduces the 

shear gradient around the collapsing bubbles.  Therefore, the degradation rate 

also decreases (Taghizadeh & Mehrdad, 2003). 

 

1.6. Objective 

The objective of the research was to determine the molecular weight and 

degree of acetylation of chitosan molecules as a function of sonication intensity 

and treatment time.   
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2. Materials and Methods 

2.1. Materials 

High molecular weight chitosan (crab shells; ~81 degree of deacetylation; 

viscosity 800 000 cps 1 % chitosan (wt/v) in 1 % acetic acid (v/v); average 

molecular weight 880kDa) was obtained from Aldrich Chemical Co. (Milwaukee, 

WI, USA).  Acetic acids and sodium hydroxide were obtained from Fisher 

Scientific (Pittsburgh, PA).  All solutions were prepared using distilled and 

deionized water.  All other materials were of analytical grade and obtained from 

Fisher Scientific (Pittsburgh, PA). 

 

2.2. Sample Preparation 

2.2.1. Preparation of Chitosan Solutions 

  Chitosan solutions containing 1 % chitosan (wt/v) in 1 % (v/v) acetic acid 

were made using the following procedure.  The chitosan was hydrated by heating 

1 g of chitosan in 90 mL of water to 60 °C.  The dispersion was cooled to room 

temperature while stirring and 10 mL of 10 % acetic acid was added to make 1 % 

acetic acid in the final solution.  The solution was stirred overnight to ensure 

complete solubilization of the chitosan molecules.   Once solubilized, the solution 

was filtered using Miracloth® (rayon-polyester; EMD Biosciences, San Diego, CA) 

to remove any impurities.  Filtered solutions were immediately sonicated in 

aliquots of 50 mL. 
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2.2.2. Sonication Treatment 

An ultrasonic processor (Model 550, Misonix Incorporated, Farmingdale, 

NY) with a 1.27 cm (1/2 inch) stainless steel probe was used to sonicate 50 mL 

chitosan solutions in 100 mL beakers that were immersed in a temperature-

controlled water bath (T = 20 °C, Lauda RM6, Germany).  Solutions were treated 

at power levels 16.5 (low power), 28.0 (medium power), and 35.2 W/cm2 (high 

power) with pulsed output (1 second sonication, 1 second break) at 25 °C.  At 

each power level, samples were sonicated for 1, 2, 10, 30, and 60 minutes.  

Duplicate samples were sonicated at each power level and treatment. 

 

2.2.3. Power Determination 

Ultrasonic wave intensities were determined calorimetrically by measuring 

the time-dependent increase in temperature of chitosan dispersions under 

adiabatic conditions (Bober, 1998). Ultrasonic intensity (I) was calculated from 

the slope of the initial rise in temperature (dT/dta), the slope of heat loss after 

turning off the sonicator (dT/dtb), the sample mass (m), the heat capacity of the 

solvent (cp), and the radius (r) of the ultrasonic probe.  
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where m = 50 g, cp = 4.2 Jg-1K-1 and r = 0.0065 m. The calculated intensities for 

power during the “on” phase were 16.5 (low power), 28.0 (medium power), and 

35.2 W/cm2 (high power), respectively.  
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2.2.4. Purification 

Once sonicated, the chitosan was purified and freeze dried to be used for 

further analysis.  Duplicate 50 mL sonicated samples were combined to create a 

100 mL stock solution for each power and time treatment.  The pH was adjusted 

to 10.0 using 1 M NaOH.  Solutions were allowed to set for 8 hours at room 

temperature for complete precipitation of chitosan molecules.  Preliminary work 

used a purification procedure involving centrifugation and the method can be 

found in Appendix A.  Due to low yields, a second procedure was used.  To 

remove sodium hydroxide and sodium acetate, the precipitated chitosan was 

dialyized (Spectra/Por #2 molecular weight cutoff 12,000 – 14,000, Spectrum 

Rancho Dominguez, CA) at 4 °C against deionized water.  After dialysis the 

chitosan was freeze dried and stored in a desiccator.   

 

2.3. Rheology 

2.3.1.  Viscosity Measurements of Chitosan Solutions 

Ultrasonicated chitosan solutions were prepared in acetic acid solution at 

1 % biopolymer concentrations and subjected to rotational tests at controlled 

shear rates between 10-5 - 103 1/s. Shear stress (σ) of ultrasonically pretreated 

chitosan solutions were recorded as a function of shear rate (
.
γ ) using a 

rotational rheometer (MCR 300, Parr Physica, NJ) with a double gap bob and 

cup apparatus (length = 40 mm, diameter = 26.66 mm, gap width = 0.225 mm). 

The temperature of the loaded sample was equilibrated to 20°C using a Peltier 
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system. Results were fitted to the power law model (Lapasin & Pricl, 1999)  

nK )(
.
γσ =  where K is the consistency coefficient in Pasn and n is the flow-

behavior index. The flow behavior index n reflects the viscosity of the solution i.e. 

n = 1 if the solution behaves Newtonian and n ≠ 1 if the solution behaves non-

Newtonian. Since viscosity of a polymer solution depends on the molecular 

weight and/or hydrodynamic radius of a biopolymer, the calculated K and n 

values at different sonication conditions can be used as a first indication for 

changes in the molecular properties of chitosan molecules. 

 

2.3.2. Determination of Intrinsic Viscosity of Chitosan Solutions 

Intrinsic viscosity of chitosan was determined following the ASTM 

standard practice for dilute solution viscosity of polymers (American Society for 

Testing and Materials, 2001).  Viscosity of chitosan dispersions in acetic acid 

with known polymer solutions was measured and the reduced viscosity ηr was 

calculated by 
cr

1
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η
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η  where η is the viscosity of the chitosan solution at the 

polymer concentration c and η0 is the solution viscosity; 1.002 mPas at 20 °C 

(Lide, 2004). Secondly, the inherent viscosity ηi was calculated as 
c
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Intrinsic viscosity [η] of deacetylated chitosan in aqueous acetic acid 

solutions was determined from the intercept of both ηi and ηr where c was near 

zero (Pa & Yu, 2001; Berth & Dautzenbert, 2002).   
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2.4. Degree of Acetylation 

2.4.1. HPLC-PDA 

Acid hydrolysis was conducted on purified chitosan samples in vacuum 

hydrolysis tubes (5 mL volume) based on the method by Niola, Basora, Chornet, 

and Vidal (1993).  A weighed amount of dried purified chitosan (10 ± 1 mg) was 

placed in a vacuum hydrolysis tube  with 0.5 mL 12 M H2SO4 and 2 mL of the 

standard mixture (6.3 mg oxalic acid dehydrate and 0.5 mL of proprionic acid 

completed to 100 mL with HPLC grade water).  The tube was sealed, air was 

evacuated and the tube was heated to 155 °C for 1 hour (Pierce Reacti-Therm 

III, Pierce, Rockford, IL), cooled in ice-water for 2 hours and then equilibriated to 

room temperature.   The mixture was filtered (0.45 µm PVDF filters with 

polypropylene housing, Whatman, Clifton, NJ) and 20 µL was injected into the 

HPLC.   

The HPLC system consisted of a Dionex GP50 gradient pump, LC20 

chromatography enclosure, AS50 autosampler, and a PDA-100 photodiode array 

detector (Dionex, Sunnydale, CA).  A 300 x 7.8 mm column HPX 87H (H+) 

cation-exchange resin (Bio-Rad Laboratories, Mississauga, ON, Canada) was 

used for separation.  The mobile phase used was 5 mM H2SO4 with an isocratic 

flow rate (0.6 mL min-1) at 22 ± 2 °C.  Detection was carried out at 210 nm.  All 

data were acquired, stored and processed with Peak Net software (Dionex, 

Sunnydale, CA).   



www.manaraa.com

 29

The total acetyl groups liberated from chitosan samples (mx in mg) was 

calculated according the equation is
is

x
x m

A
AKm ××=   where K is the response 

factor, Ax and Ais are the areas of the acetic acid and proprionic acid (internal 

standard) peaks, respectively, and mis (mg) is the amount of internal standard.  

The percentage of N-acetylation was calculated using the equation 

100
4243

161(%) ×
×−

×
=

X
XDA  where X = mx / M’ and M’ = m - mi, (m = sample mass, 

mi = mass of inorganic material); 161 is the molecular weight of a 2-amino-2-

deoxy-D-glucose unit (g/mol); 43 is the molecular weight of an acetyl group 

(g/mol); and 42 is the molecular weight of a deprotonized acetyl group.  The 

original equation (Niola et al., 1993) includes the mass of inorganic material (mi) 

present in the chitosan.  Since our chitosan samples were extensively purified, 

this factor was considered negligible and was not included in the calculation. 

 

2.4.2. FTIR  

 Since determination of degree of acetylation by chromatography 

techniques requires extensive sample preparation and hydrolysis that can 

significantly affect reproducibility, the second method for DA determination was 

involved in the study. Fourier Transform Infrared Spectroscopy (FTIR) has been 

the most often used technique in determination of DA of chitosans having 

advantage in being accurate, quick, and nondestructive. The instrument used to 

record samples’ spectra was a Nexus 670 FTIR spectrometer with attenuated 
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total reflection (ATR) accessory with Ge crystal (ThermoNicolet Co., Mountain 

View, CA). The spectra were collected between 4000 and 700 cm-1 with 64 scans 

and resolution of 4 cm-1. Degree of acetylation (%) was calculated from 

absorption mode using OMINC 6.1 software (ThermoNicolet Co.). Based on the 

equation proposed by Brugnerotto, Lizardi, Goycoolea, Agguelles-Monal, 

Desbrieres, and Rinaudo (2001), the bands at 1420 cm-1 and 1320 cm-1 were 

selected as the reference and characteristic, respectively, and the DA was 

calculated as 
03133.0

3822.0)1420
1320(

(%)
−

= A
A

DA . 

 

2.5. Statistical Analysis 

Data obtained from degree of acetylation analysis from the HPLC-PDA 

method were analyzed with a SAS statistical analysis program (SAS Institute, 

Inc; Cary, NC; version 9.1).  Analysis of variance was done with mean separation 

using Tukey’s test to determine if differences existed.  Significance was 

established at p ≥ 0.05.  All SAS printouts are included in Appendix B. 
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3. Results and Discussion 

3.1. Solution Viscosity of Ultrasonicated Chitosan 

Shear stress of ultrasonically pretreated chitosan solutions at a 

concentration of 0.1 g/L were recorded as a function of shear rate.  Figures 2 and 

3 show flow curves of the 1 % (wt/v) chitosan solutions sonicated for up to 60 

minutes at 16.5 and 35.2 W/cm2, respectively.  Shear stress at all shear rates 

decreased with increasing sonication time indicating a reduction in solution 

viscosity.  For example, shear stress of solutions at a shear rate of 50 s-1 

decreased from 11.2 Pa to 6.8 and 2.0 Pa after 10 and 60 minutes of sonication.  

At higher ultrasonic intensities the decrease in shear stress is more pronounced, 

e.g. the shear stress decreased to 2.0 and 0.8 Pa after 10 and 60 minutes of 

sonication. 

The strong influence of both sonication time and ultrasonic intensity can 

also be seen from fits of the flow curve to the well-known power law model.  

Figures 4 and 5 show a plot of the power law indexes K and n of the 1 % (wt/v) 

chitosan solutions sonicated at the three different ultrasonic intensities as a 

function of sonication time.  The value of K decreased from 0.267 to 0.037 at 

16.5 and 28.0 W/cm2 and to 0.01 at 35.2 W/cm2 after 60 minutes of sonication 

while the power law index n increased from 0.0888 to 0.998 after 60 minutes of 

sonication.  The increase of the power law index n indicates a shift towards a 

more Newtonian behavior, i.e. an ideal Newtonian fluid has a power law index of  
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Figure 2:  Shear stress (σ) versus shear rate (γ& ) of 0, 1, 2, 10, 30 and 60 minute 
ultrasonicated high molecular weight chitosan solutions at ultrasonic intensities of 
16.5 W/cm2 (low power level).  
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Figure 3: Shear stress (σ) versus shear rate (γ& ) of 0, 1, 2, 10, 30 and 60 minute 
ultrasonicated high molecular weight chitosan solutions at ultrasonic intensities of 
35.2 W/cm2 (high power level). 
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Figure 4: Power law index K obtained from non-linear curve fits of measured 
shear stress versus shear rate data of chitosan solutions treated with high 
intensity ultrasound 16.5 (low power), 28.0 (medium power) and 35.2 (high 
power) W/cm2 for 0, 1, 2, 10, 30 and 60 minutes. 
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Figure 5: Power law index n obtained from non-linear curve fits of measured 
shear stress versus shear rate data of chitosan solutions treated with high 
intensity ultrasound 16.5 (low power), 28.0 (medium power) and 35.2 (high 
power) W/cm2 for 0, 1, 2, 10, 30 and 60 minutes. 
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n = 1.  Polymer dispersions on the other hand may exhibit shear thinning or 

thickening behavior with results in n ≠ 1.  The extent of shear thinning or 

thickening depends on a number of intrinsic and extrinsic parameters that include 

polymer properties such as size, shape and concentration of macromolecules in 

solution, solvent type, presence of ions and temperature.  These factors govern 

the extent of entanglement and intermolecular interactions between polymer 

molecules.  Since ions had been previously removed via dialysis and 

temperature, solvent type and polymer concentration were kept constant 

throughout all experiments, the results suggest that the intrinsic properties of the 

polymer that is polymer size and shape were altered by the application of high-

intensity ultrasound.       

 

3.2. Intrinsic Viscosity and Molecular Weight of Ultrasonicated 

Chitosan Solution 

The intrinsic viscosity of chitosan samples sonicated for 0, 1, 2, 10, 30, 

and 60 minutes at ultrasonic intensities of 16.5 (low power), 28.0 (medium 

power), and 35.2 W/cm2 (high power) was determined (Figure 6).  The intrinsic 

viscosity of all chitosan solutions decreased exponentially as the sonication time 

increased from 0 to 60 minutes.  Intrinsic viscosity of chitosan sonicated at lowest 

intensity for 60 minutes decreased from 3.85 to 1.6 dL/g.  The extent of decrease 

of intrinsic viscosity was strongly influenced by the applied ultrasonic intensity,  
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Figure 6: Intrinsic viscosity of chitosan solutions as a function of sonication time 
for ultrasonic intensities of 16.5 (low power), 28.0 (medium power) and 35.2 (high 
power) W/cm2. 
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e.g. the intrinsic viscosity of chitosan sonicated at the highest intensity level of 60 

minutes decreased to 0.76 dL/g.   

Average molecular weights of chitosan were calculated from measured 

intrinsic viscosities shown in Figure 6 using the classical Mark-Houwink 

relationship a
wmMK=][η .  Km and a are the so-called Mark-Houwink parameters.  

For chitosan, the Mark-Houwink parameters depend on the degree of acetylation, 

temperature, and solvent type.  For example, a has been reported to decrease 

from 1.12 to 0.81 with Km increased from 0.1 to 16 x 10-5 (dL/g) as the degree of 

deacetylation increased from 69 to 100%.  In this study, Km = 2 x 10-5 (dL/g) and 

a = 0.89 was used based on available light scattering data and literature data of 

chitosans with initial molecular weights and degree of acetylations close to that of 

our sample (Mw ≈ 880 kDa; DA ≈ 20%) (Wang, Shuqin, Li & Qin, 1991; Chen 

1998).  Calculated molecular weights for the untreated samples were 867 kDa 

(Table 1), which is in fair agreement with the manufacturer’s data.  Upon 60 

minutes of sonication, the molecular weight of chitosan samples decreased to 

325 kDa, 181 kDa, and 140 kDa at ultrasonic intensities of 16.5 (low power), 28.0 

(medium power), and 35.2 W/cm2 (high power), respectively (Table 1).  The data 

also indicates that with increasing sonication time, the molecular weight of the 

solutions approaches a limiting final value Me, that is  MM t
t

e lim
∞→

=  .    

Extrapolation of molecular weight versus time data using a simple exponential 

decay function predicts that the molecular weight changes less than 5 % after a  
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Table 1: Average molecular weight of chitosan dispersions ultrasonicated for 0, 
1, 2, 10, 30 and 60 minutes at intensities of 16.5, 28 and 35.2 W/cm2 calculated 
from intrinsic viscosity using the Mark-Houwink parameters a = 0.79 and K = 2.14 
x  10-3. 
 

Low Power 
16.5 Wcm-2 

Medium Power 
28.0 Wcm-2 

High Power 
35.2 Wcm-2 Sonication 

Time 
Mw ∆Mw Mw ∆Mw Mw ∆Mw 

0 867191 61117 867191 61117 867191 61117 

1 817339 69561 815117 55220 741614 62921 

2 803932 79496 768425 35806 584547 65037 

10 486764 39679 360799 11698 249640 12057 

30 368853 15437 241220 26696 167566 29344 

60 325469 9364 181141 22189 140983 8589 
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sonication time longer than 60 minutes, a fact that has also been reported by 

other investigators using synthetic polymers.  For example, Madras, Kumar & 

Chattapadhay (2000) found that ratio ultrasonicated to initial molecular weight 

XMn = Mt / M0 of both polystyrene (Mw = 157 kDa; PD = 1.2) and poly (vinyl 

acetate) (Mw = 270 kDa; PD = 1.1) decreased from XMn = 1 at t = 0 to XMn ≈ 0.25 

at t > 60 minutes but then remain constant.  The presence of a limiting final 

molecular weight is typical for the degradation of large molecules by high-

intensity ultrasound.  Similarily, Xiuyang, Yuefang, Bailin & Xi (2001) using 

hydroxyethyl cellulose with an initial molecular weight of 70 kDa found that after  

60 minutes of sonication the molecular weight approached a final molecular 

weight of ~ 18 kDa. 

 

3.3. Ultrasonically Driven Depolymerization Kinetics of 

Chitosan 

The presence of a final molecular weight has been attributed to the fact 

that the sensitivity of linear stiff rod macromolecules to high-intensity 

ultrasonically generated shear and normal stresses decreases with decreasing 

molecular weigh (Schmid, 1940).  The remaining molecule while strongly 

reduced in length still retains a considerable degree of polymerization.  

Interestingly, initial models suggested that the decrease in the reduction of 

molecular weight with increasing sonication time was not due to the production of 

a molecule that can no longer be depolymerized but that instead with increasing 
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disruption of intramolecular bonds in the macromolecules the number of total 

molecules in the solution increased.  If simultaneously the number of bonds that 

can be broken within a given time interval remains constant but the number of 

available molecules it would consequently lead to a decrease in the 

depolymerization kinetics because less bonds can be broken per available 

molecule.  However, reaction models based on, for example, simple mid-chain 

splits, e.g. P(x)  2 P(x/2), that lead to simple first order kinetics without the 

introduction of a rate limiting factor such as a final molecular weight have not 

been suitable to describe experimentally obtained results.  Interestingly, the 

introduction of the dependence of the rate on a limiting molecular weight such as 

k (M) = k (M – Me) has lead to the development of a model with a quasi first order 

reaction kinetics in the from of (Madras, et al., 2000; Madras & Chattopadhyay, 

2001) ( )
( ) tkM

MM
MMH e

te

e =







−
−

= 0lnln .  That shows good agreement with 

experimental data obtained with polypropylene and polybutadiene degraded in 

various solvents.  Unfortunately, the model did not provide a good fit with our 

experimental data, that is polts of ln H versus the time exhibited strong non-

linearity (data not shown).   

We therefore interpreted our data in terms of as early degradation model 

developed by Schmid (1940), where ( )e
L

PPk
dt
dx

N
−=

1 .  Combining the previous 

three equations followed by integration from t = 0 with M0 to t with Mt yields 
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CtP
c
k

M
M

M
M

e
t

e

t

e +=







−−− 21ln , where Pe is the final degree of polymerization 

given by Pe = Me / Mmonomer.  Thus if the last equation holds, then a plot of the so-

called Schmid declination factor (right-hand side of the equation) versus time 

should yield a straight line. Figure 7 shows a poly of the Schmid declination 

factor calculated with the molecular weight data of our chitosan solutions 

sonicated at the three power levels as a function of sonication time t using a 

constant final molecular weight of 130 kDa.  Generally, regression factors of R2 > 

0.98 were obtained indicating a good agreement with the theory.  Finally, the rate 

constant k was calculated from the slope of the Schmid declination factors versus 

time m
P
ck
e
2= , using Pe of 390 based on an assumed average molecular weight 

of the monomeric unit of 333 g/mol.  Table 2 shows the ultrasonic degradation 

rate k as a function of ultrasonic intensity.  The rate constant increased with 

increasing ultrasonic intensity.  A plot of the three rate constants and a 

hypothetical rate constant of zero if the molecular weight remains unchanged 

suggests an exponential dependence of the rate constant on the ultrasonic 

power level similar to the Arrhenius law that predicts an exponential increase in 

the chemical reaction rates with temperature.  However, the number of 

investigated power levels is too low to develop a conclusive model and confirm 

this hypothesis.  Additional experiments will be needed to conclusively answer 

this question.   
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Figure 7: Schmid declination factor as a function of treatment time for chitosan 
solution ultrasonicated at 16.5 (low power), 28.0 (medium power), and 35.2 
W/cm2 (high power) (Schmid, 1940) 
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Table 2: Depolymerization rates k calculated from slopes m of Schmid plots for 1 
% (wt/v) chitosan solutions sonicated at three different intensities: 16.5, 28.0, and 
35.2 W/cm2 (Schmid, 1940) 
 

Power Intensity 
(W/cm2) m (min-1) ∆m k  

(Mol min-1 L-1 1012) ∆k 

Low 16.5 0.0034 0.0006 0.26 0.0454

Medium 28.0 0.0177 0.0004 1.34 0.0285

High 35.2 0.550 0.0017 4.23 0.1352
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Alternatively, rate constants could be calculated using different final 

molecular weights per ultrasonic intensity levels, e.g. 300 kDa, 170 kDa and 130 

kDa at 16.5 (low power), 28.0 (medium power), and 35.2 W/cm2(high power), 

respectively.  In this case, a single reaction rate is obtained (k = 4.2 ± 0.36 

mol/min L x 1012).  In this case, the dependence of the degradation reaction on 

the ultrasonic intensity emerges through the variation in the final molecular 

weight.  A plot of the final molecular weight Me versus the ultrasonic intensity 

reveals a similar exponential dependence, that is the final molecular weight 

decrease exponentially as the ultrasonic power increases.  Thus the proposed 

model by Schmid that is not based on mid-chain splitting kinetics appears to be 

suitable to describe the results obtained in this study.  Generally, the question of 

where precisely the chain scission occurs is difficult to answer and requires 

additional experiments.  The situation is also complicated by the fact that the 

stress distribution within the system during sonication cannot be assumed to be 

homogeneous since the ultrasonic energy experienced by the chitosan 

macromolecules is a function of location within the sonication vessel.  For 

example, in the case of probe sonicators, the ultrasonic intensity decreases 

exponentially with increasing distance from the tip of the ultrasonic probe. 

 

3.4. Degree of Acetylation 

High pressure liquid chromatography with photodiode array detector (HPLC-

PDA) and Fourier Transform Infrared Spectroscopy with attenuated total 
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reflection accessory (FTIR-ATR) were used to determine the degree of 

acetylation (DA) of sonicated and nonsonicated chitosan samples.  Average DA 

of untreated samples was 21.5 %, which is in good agreement with the 

manufacturer’s specifications for this lot (~19 %).  Mean values and standard 

deviations of DA of chitosan solutions sonicated for up to 60 minutes at all three 

intensities are shown in Figure 8 and ranged from 15.8 to 32.3 %. Statistical 

analysis based on Tukey’s mean separation showed no significant difference 

between samples, regardless of power levels or times of sonication. The results 

are in agreement with those found in literature. Signini, Desbrieres, and 

Campana Filho (2000) found that the average DA of the commercial chitosan 

hydrochloride and samples prepared by ultrasound depolymerization were similar 

and concluded that ultrasound treatment provoked no changes in the degree of 

acetylation. Tang, Huang, and Lim (2003) sonicated chitosan nanoparticles for 

10 minutes at the power levels from 14 to 99 W/cm2 at room temperature and 

found that the FTIR spectra and the DA were not affected either by ultrasound 

intensity or by time. Similarly, Kasaai, Arul, Chin, and Charlet (1999) applied 

intense femtosecond laser pulses to depolymerize dissolved chitosan and 

reported that no significant change in DA occurred in the fragmented products. 

These results confirm stability of acetylated glucosamine residues and show 

promise in application of ultrasound treatments for depolymerization of chitin and 

chitosan molecules with no alteration in degree of acetylation. 
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Figure 8: Average degree of acetylation of purified chitosan based on the HPLC-
PDA method.  Samples were sonicated at powers 16.5 W/cm2 (low power), 28 
W/cm2 (medium power), and 35.2 W/cm2 (high power) for 0, 1, 2, 10, 30, and 60 
minutes. 
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The relatively wide range of DA values obtained by HPLC can be 

attributed to the applied methodology. It has been recognized that some 

techniques used for determination of DA in chitinous materials, including liquid 

and gas chromatography, have drawbacks in length of sample preparation and 

low accuracy (Muzzarelli, Rocchetti, Stanic, & Weckx, 1997; Roberts, 1992). The 

applied method requires hydrolysis of the chitosan samples in order to liberate 

acetic acid from acetylglucosamine residues. Niola, Basora, Chornet, and Vidal 

(1993), who established this analysis, detected significant carbonization of sugar 

molecules when hydrolysis lasted longer than 60 minutes. Additionally, they 

recognized a possibility of degradation of oxalic and propionic acid used as a 

reagent and internal standard, respectively, as well as glucosamine and 

acetylglucosamine, and formation of additional quantities of acetic acid as a 

product of degradation reactions. Although the authors suggested that no 

degradation products were formed when hydrolysis lasted up to 60 minutes, we 

did observe development of brownish coloration in some of the samples after 

only 60 minute-hydrolysis. We speculate that the coloration may be the 

consequence of formation of Schiff’s base, furfural, and hydroximethyl furfural, 

and the sign of sugar degradation that, in turn, caused inconsistency in detected 

acetic acid quantities.  

Another potential reason for observed variations is in the possibility of a 

presence of residual acetate ions in the samples. During the experiments, the 

sonicated chitosan was precipitated from solutions with alkali, dialyzed to remove 

excess of sodium hydroxide and sodium acetate, and freeze-dried. To evaluate a 
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possible presence of the residual acetate ions, the chitosan samples were 

analyzed without hydrolysis. The values for degree of acetylation calculated 

based on the difference between hydrolyzed and non-hydrolyzed samples 

ranged from 8.73 to 21.44 % (data presented in Appendix D), but the standard 

deviation between replications was not reduced. 

The second method applied for the DA determination was FTIR-ATR. The 

characteristic FTIR absorbance spectra are shown in Figure 9. The DA values of 

sonicated chitosan ranged from 4.61 to 11.27 % (Table 3). The FTIR is most 

often used for determination of degree of acetylation in chitins and chitosans 

(Brugnerotto et al., 2001; Duarte et al., 2002; Shigemasa et al., 1996). The 

particular advantage of this technique is in direct analysis of powders and films 

with no need for sample preparation. However, disagreement exists regarding 

which peaks give the most accurate estimation of DA values. Two factors, the 

presence of absorbed water and level of acetylation, are of major importance in 

selecting reference and characteristic peaks. The common reference bands 

include 3450 cm-1 (OH stretching; Domard & Rinaudo 1983; Duarte et al., 2002), 

2877 cm-1 (stretching of CH from -CH2OH and -CH3 groups; Duarte et al., 2002), 

and 1159, 1074, and 1025 cm-1 (stretching of CO from COH, COC, CH2OH 

groups; Duarte et al., 2002). The characteristic bands are usually chosen at 1655 

cm-1, 1630 cm-1 (amide I), and 1560 (amide II) from acetylated residues (Domard 

& Rinando, 1983; Duarte et al., 2002; Rueda, Secall, & Bayer, 1999). 
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Figure 9: Characteristic FTIR-ATR spectra of sonicated chitosan samples at 
35.2 W/cm2 (high power) for 0 and 60 minutes sonication time. 
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Table 3: Average degree of acetylation of purified chitosan based on the FTIR-
ATR method.  Samples were sonicated at room temperature at powers 16.5, 28, 
and 35.2 W/cm2 for 0, 1, 2, 10, 30, and 60 minutes. 
 

 

 

 

 

 

 

 

 

* The DA values were calculated using 1420 and 1320 cm-1 as reference and 

characteristic peaks, respectively (Brugherotto et al. 2001) 

 

 

 

 

 

 

 

 

 

Time Sonication Power (W/cm2)  
(min) 16.5  28.0 35.2 

0 10.75 ± 4.8 10.02 ± 3.5 9.35 ± 2.5 

1 8.85 ± 4.3 10.86 ± 3.0 10.77 ± 1.7 

2 8.20 ± 3.4 7.45 ± 4.5 9.32 ± 4.8 

10 8.04 ± 4.3 6.98 ± 2.5 9.76 ± 2.6 

30 7.80 ± 3.2 7.43 ± 3.7 11.27 ± 2.2 

60 6.19 ± 2.2 4.61 ± 3.3 4.89 ± 3.0 
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However, the presence of water sharply increases the band at 1640 cm-1 

(Shigemosa et al. 1996) which may interfere with the amide I bands. Brugnerotto, 

Lizardi, Goycoolea, Agguelles-Monal, Desbrieres, and Rinaudo (2001) suggested 

1420 cm-1 as a reference band since they did not observe any changes in its 

intensity in the wide range of DA. The band at 1320 cm-1 showed the best fit (r = 

0.99) with the results obtained with liquid 1H NMR and solid state CP/MAS 13C 

NMR in the whole range of DA (from 0.5 to 97.9 %). This was the first time that 

1320 cm-1 was used as a characteristic band and the authors annotated it as 

“characteristic to –OH, -NH2, and –CO groups”. It has to be pointed out that in 

calibration and optimization studies, such as of Brugnerotto, Lizardi, Goycoolea, 

Agguelles-Monal, Desbrieres, and Rinaudo (2002), Shigemosa, Matsura, 

Sashiwa, and Saimoto (1996), and Duarte, Ferreira, Marvao, and Rocha (2002), 

good fitting was achieved only when samples with the full range of DA values 

(from < 5 % to > 95 %) were used. In our study, one chitosan sample was 

sonicated at different power levels for different times, and DA apparently did not 

change. Consequently, the degree of acetylations of all the samples were in a 

narrow range (~ 10 – 20 %) and variations of the values were inevitable.  
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4. Conclusions 

Ultrasonic treatment in the medium to low power range has the potential to 

replace time consuming chemical or enzymatic methods that are currently used 

to modify the molecular weight of chitosan. In the presence of an acidic solvent, 

the degree of acetylation remains unchanged by the application of ultrasound, 

which is generally desirable for its biological activity.  High intensity ultrasound 

offers a convenient and easily controllable methodology to tailor this important 

functional carbohydrate. Future studies will concentrate on the specific chemical 

modifications that are caused by the application of ultrasound and relate it to 

chitosan functional properties such as antimicrobial activity and metal binding. 
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Appendix A 

Purification of chitosan through centrifugation 

Chitosan solutions were prepared as explained in the section 2.1.1.  After 

filtering with Miracloth®, the chitosan solutions are vacuumed filtered using 

Whatman No. 1 filter paper.  The pH is adjusted to 10.0 using 1 N sodium 

hydroxide to allow the chitosan to precipitate.  To allow for complete precipitation, 

the solution is stored at room temperature overnight.  Once completely 

precipitated, the solution is centrifuged at 4°C at approximately 72,000 g’s for 30 

minutes per cycle.  During centrifugation, the pH is adjusted to neutral through 

washing of the chitosan.  The isolated chitosan is freeze dried and stored in 

desicators.   
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Appendix B 

SAS Program 

data one; input power time hydrolysis difference; 
datalines; 
1 1 25.75 16.62 
1 1 18.97 7.60 
1 1 15.71 6.30 
1 2 . 32.22 
1 2 22.39 17.25 
1 2 18.92 14.35 
1 3 . 37.34 
1 3 23.05 12.23 
1 3 21.73 10.27 
1 4 . 24.10 
1 4 20.00 10.60 
1 4 19.42 11.65 
1 5 . 41.03 
1 5 10.76 1.70 
1 5 20.82 15.75 
1 6 31.74 24.41 
1 6 14.14 3.92 
1 6 22.16 10.13 
2 1 17.99 10.81 
2 1 20.74 14.78 
2 1 27.10 23.19 
2 2 31.88 27.23 
2 2 18.33 14.58 
2 2 16.26 11.30 
2 3 . 30.08 
2 3 23.56 13.52 
2 3 . 26.37 
2 4 21.65 16.88 
2 4 18.45 14.88 
2 4 25.07 20.96 
2 5 26.38 17.54 
2 5 25.86 17.67 
2 5 30.32 22.07 
2 6 . 60.70 
2 6 32.25 16.87 
2 6 32.45 26.00 
3 1 22.11 18.85 
3 1 . 27.54 
3 1 22.54 17.20 
3 2 27.45 20.86 
3 2 21.32 15.86 
3 2 17.73 12.83 
3 3 23.73 17.26 
3 3 23.42 18.96 
3 3 23.54 17.14 
3 4 16.67 11.60 
3 4 24.17 18.54 



www.manaraa.com

 66

3 4 17.96 13.61 
3 5 21.89 10.63 
3 5 20.47 13.69 
3 5 27.60 19.88 
3 6 24.95 15.60 
3 6 31.79 22.88 
3 6 16.64 5.62 
; 
proc glm; class power time; model hydrolysis=power time power*time ; 
lsmeans power time power*time/pdiff; run; 
means power time power*time /tukey;run; 
 

SAS Results 

 
                                        The GLM Procedure 
 
                                     Class Level Information 
 
                               Class         Levels    Values 
 
                               power              3    1 2 3 
 
                               time               6    1 2 3 4 5 6 
 
 
                             Number of Observations Read          54 
                             Number of Observations Used          46 
 
 
                                        The GLM Procedure 
 
Dependent Variable: hydrolysis 
 
                                               Sum of 
      Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
      Model                       17      445.454693       26.203217       1.03    0.4574 
 
      Error                       28      711.096300       25.396296 
 
      Corrected Total             45     1156.550993 
 
 
                     R-Square     Coeff Var      Root MSE    hydrolysis Mean 
 
                     0.385158      22.33659      5.039474           22.56152 
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      Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
      power                        2     125.0644615      62.5322307       2.46    0.1035 
      time                         5     169.6178264      33.9235653       1.34    0.2782 
      power*time                  10     150.7724056      15.0772406       0.59    0.8053 
 
 
      Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
      power                        2     141.4613597      70.7306799       2.79    0.0789 
      time                         5     175.5361739      35.1072348       1.38    0.2609 
      power*time                  10     150.7724056      15.0772406       0.59    0.8053 
 
 
                                        The GLM Procedure 
                                       Least Squares Means 
 
                                           hydrolysis      LSMEAN 
                                power          LSMEAN      Number 
 
                                1          20.2280556           1 
                                2          24.8755556           2 
                                3          22.5725000           3 
 
 
                               Least Squares Means for effect power 
                               Pr > |t| for H0: LSMean(i)=LSMean(j) 
 
                                  Dependent Variable: hydrolysis 
 
                          i/j              1             2             3 
 
                             1                      0.0255        0.2147 
                             2        0.0255                      0.2303 
                             3        0.2147        0.2303 
 
 
                                           hydrolysis      LSMEAN 
                                 time          LSMEAN      Number 
 
                                 1         21.4705556           1 
                                 2         21.6594444           2 
                                 3         23.1711111           3 
                                 4         20.3444444           4 
                                 5         22.2100000           5 
                                 6         26.4966667           6 
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                               Least Squares Means for effect time 
                               Pr > |t| for H0: LSMean(i)=LSMean(j) 
 
                                  Dependent Variable: hydrolysis 
 
 i/j              1             2             3             4             5             6 
 
    1                      0.9418        0.5636        0.6641        0.7753        0.0602 
    2        0.9418                      0.6075        0.6123        0.8317        0.0698 
    3        0.5636        0.6075                      0.3396        0.7436        0.2627 
    4        0.6641        0.6123        0.3396                      0.4732        0.0234 
    5        0.7753        0.8317        0.7436        0.4732                      0.1059 
    6        0.0602        0.0698        0.2627        0.0234        0.1059 
 
 
                                        The GLM Procedure 
                                       Least Squares Means 
 
                                               hydrolysis      LSMEAN 
                            power    time          LSMEAN      Number 
 
                            1        1         20.1433333           1 
                            1        2         20.6550000           2 
                            1        3         22.3900000           3 
                            1        4         19.7100000           4 
                            1        5         15.7900000           5 
                            1        6         22.6800000           6 
                            2        1         21.9433333           7 
                            2        2         22.1566667           8 
                            2        3         23.5600000           9 
                            2        4         21.7233333          10 
                            2        5         27.5200000          11 
                            2        6         32.3500000          12 
                            3        1         22.3250000          13 
                            3        2         22.1666667          14 
                            3        3         23.5633333          15 
                            3        4         19.6000000          16 
                            3        5         23.3200000          17 
                            3        6         24.4600000          18 
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                            Least Squares Means for effect power*time 
                               Pr > |t| for H0: LSMean(i)=LSMean(j) 
 
                                  Dependent Variable: hydrolysis 
 
i/j     1         2         3         4         5         6         7         8         9 
 
1            0.9122    0.6291    0.9256    0.3521    0.5426    0.6651    0.6284    0.5618 
2  0.9122              0.7332    0.8526    0.3426    0.6632    0.7815    0.7465    0.6415 
3  0.6291    0.7332              0.5991    0.2010    0.9502    0.9233    0.9599    0.8510 
4  0.9256    0.8526    0.5991              0.4432    0.5238    0.6311    0.5990    0.5378 
5  0.3521    0.3426    0.2010    0.4432              0.1454    0.1918    0.1773    0.2185 
6  0.5426    0.6632    0.9502    0.5238    0.1454              0.8592    0.8997    0.8809 
7  0.6651    0.7815    0.9233    0.6311    0.1918    0.8592              0.9590    0.7832 
8  0.6284    0.7465    0.9599    0.5990    0.1773    0.8997    0.9590              0.8112 
9  0.5618    0.6415    0.8510    0.5378    0.2185    0.8809    0.7832    0.8112 
10 0.7039    0.8181    0.8858    0.6650    0.2077    0.8178    0.9577    0.9169    0.7546 
11 0.0838    0.1468    0.2743    0.1007    0.0165    0.2494    0.1862    0.2030    0.5018 
12 0.0130    0.0278    0.0580    0.0182    0.0027    0.0447    0.0316    0.0350    0.1655 
13 0.6390    0.7428    0.9898    0.6079    0.2053    0.9390    0.9345    0.9711    0.8429 
14 0.6267    0.7449    0.9616    0.5975    0.1767    0.9016    0.9571    0.9981    0.8125 
15 0.4129    0.5324    0.8005    0.4093    0.1022    0.8316    0.6968    0.7350    0.9995 
16 0.8959    0.8203    0.5491    0.9811    0.4146    0.4604    0.5736    0.5394    0.5018 
17 0.4466    0.5670    0.8413    0.4392    0.1129    0.8775    0.7404    0.7795    0.9674 
18 0.3031    0.4152    0.6562    0.3107    0.0699    0.6686    0.5457    0.5801    0.8782 
 
                            Least Squares Means for effect power*time 
                               Pr > |t| for H0: LSMean(i)=LSMean(j) 
 
                                  Dependent Variable: hydrolysis 
 
i/j    10        11        12        13        14        15        16        17        18 
 
1  0.7039    0.0838    0.0130    0.6390    0.6267    0.4129    0.8959    0.4466    0.3031 
2  0.8181    0.1468    0.0278    0.7428    0.7449    0.5324    0.8203    0.5670    0.4152 
3  0.8858    0.2743    0.0580    0.9898    0.9616    0.8005    0.5491    0.8413    0.6562 
4  0.6650    0.1007    0.0182    0.6079    0.5975    0.4093    0.9811    0.4392    0.3107 
5  0.2077    0.0165    0.0027    0.2053    0.1767    0.1022    0.4146    0.1129    0.0699 
6  0.8178    0.2494    0.0447    0.9390    0.9016    0.8316    0.4604    0.8775    0.6686 
7  0.9577    0.1862    0.0316    0.9345    0.9571    0.6968    0.5736    0.7404    0.5457 
8  0.9169    0.2030    0.0350    0.9711    0.9981    0.7350    0.5394    0.7795    0.5801 
9  0.7546    0.5018    0.1655    0.8429    0.8125    0.9995    0.5018    0.9674    0.8782 
10           0.1699    0.0285    0.8969    0.9150    0.6582    0.6099    0.7009    0.5114 
11 0.1699              0.3027    0.2684    0.2039    0.3445    0.0645    0.3161    0.4633 
12 0.0285    0.3027              0.0565    0.0352    0.0664    0.0098    0.0597    0.0974 
13 0.8969    0.2684    0.0565              0.9728    0.7898    0.5584    0.8303    0.6462 
14 0.9150    0.2039    0.0352    0.9728              0.7368    0.5378    0.7813    0.5817 
15 0.6582    0.3445    0.0664    0.7898    0.7368              0.3437    0.9533    0.8291 
16 0.6099    0.0645    0.0098    0.5584    0.5378    0.3437              0.3737    0.2475 
17 0.7009    0.3161    0.0597    0.8303    0.7813    0.9533    0.3737              0.7838 
18 0.5114    0.4633    0.0974    0.6462    0.5817    0.8291    0.2475    0.7838 
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                                        The GLM Procedure 
 
                       Tukey's Studentized Range (HSD) Test for hydrolysis 
 
                  NOTE: This test controls the Type I experimentwise error rate. 
 
 
                           Alpha                                   0.05 
                           Error Degrees of Freedom                  28 
                           Error Mean Square                    25.3963 
                           Critical Value of Studentized Range  3.49918 
 
 
                  Comparisons significant at the 0.05 level are indicated by ***. 
 
 
                                       Difference      Simultaneous 
                           power          Between     95% Confidence 
                         Comparison         Means         Limits 
 
                           2 - 3            1.966     -2.452   6.383 
                           2 - 1            4.156     -0.478   8.789 
                           3 - 2           -1.966     -6.383   2.452 
                           3 - 1            2.190     -2.310   6.690 
                           1 - 2           -4.156     -8.789   0.478 
                           1 - 3           -2.190     -6.690   2.310 
 
 
                                        The GLM Procedure 
 
                       Tukey's Studentized Range (HSD) Test for hydrolysis 
 
                  NOTE: This test controls the Type I experimentwise error rate. 
 
 
                           Alpha                                   0.05 
                           Error Degrees of Freedom                  28 
                           Error Mean Square                    25.3963 
                           Critical Value of Studentized Range  4.32167 
 
 
                  Comparisons significant at the 0.05 level are indicated by ***. 
 
 
                                       Difference      Simultaneous 
                            time          Between     95% Confidence 
                         Comparison         Means         Limits 
 
                           6 - 3            2.593     -5.724  10.910 
                           6 - 5            2.753     -4.948  10.453 
                           6 - 2            3.980     -3.720  11.680 
                           6 - 1            4.401     -3.299  12.101 
                           6 - 4            5.341     -2.359  13.041 
                           3 - 6           -2.593    -10.910   5.724 
                           3 - 5            0.159     -8.158   8.476 
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                           3 - 2            1.387     -6.930   9.704 
                           3 - 1            1.808     -6.509  10.125 
                           3 - 4            2.748     -5.569  11.065 
                           5 - 6           -2.753    -10.453   4.948 
                           5 - 3           -0.159     -8.476   8.158 
                           5 - 2            1.227     -6.473   8.928 
                           5 - 1            1.649     -6.051   9.349 
                           5 - 4            2.589     -5.111  10.289 
                           2 - 6           -3.980    -11.680   3.720 
                           2 - 3           -1.387     -9.704   6.930 
                           2 - 5           -1.227     -8.928   6.473 
                           2 - 1            0.421     -7.279   8.121 
                           2 - 4            1.361     -6.339   9.061 
                           1 - 6           -4.401    -12.101   3.299 
                           1 - 3           -1.808    -10.125   6.509 
                           1 - 5           -1.649     -9.349   6.051 
                           1 - 2           -0.421     -8.121   7.279 
                           1 - 4            0.940     -6.760   8.640 
                           4 - 6           -5.341    -13.041   2.359 
                           4 - 3           -2.748    -11.065   5.569 
                           4 - 5           -2.589    -10.289   5.111 
                           4 - 2           -1.361     -9.061   6.339 
                           4 - 1           -0.940     -8.640   6.760 
 
 
                                        The GLM Procedure 
 
 
                  Level of     Level of           ----------hydrolysis--------- 
                  power        time         N             Mean          Std Dev 
 
                  1            1            3       20.1433333       5.12180958 
                  1            2            2       20.6550000       2.45366053 
                  1            3            2       22.3900000       0.93338095 
                  1            4            2       19.7100000       0.41012193 
                  1            5            2       15.7900000       7.11349422 
                  1            6            3       22.6800000       8.81151519 
                  2            1            3       21.9433333       4.67269016 
                  2            2            3       22.1566667       8.48402224 
                  2            3            1       23.5600000        . 
                  2            4            3       21.7233333       3.31060921 
                  2            5            3       27.5200000       2.43877018 
                  2            6            2       32.3500000       0.14142136 
                  3            1            2       22.3250000       0.30405592 
                  3            2            3       22.1666667       4.91500085 
                  3            3            3       23.5633333       0.15631165 
                  3            4            3       19.6000000       4.00995012 
                  3            5            3       23.3200000       3.77397668 
                  3            6            3       24.4600000       7.58687683 
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Appendix C 

HPLC-PDA Degree of Acetylation Determination for Second Dialysis 

Treatment 

Table 4: Average degree of acetylation of purified chitosan from replicated 
dialysis treatment based on the HPLC-PDA method.  Samples were sonicated at 
powers 16.5 (low power), 28 (medium power), and 35.2 W/cm2 (high power) for 
0, 1, 2, 10, 30, and 60 minutes. 
 

Sonication Power (W/cm2) Sonication 
Time 16.5 28.0 35.2 

0 34.8 ± 8.2 35.5 ± 12.2 26.4 ± 5.8 

1 30.3 ± 20.3 46.6 ± 15.5 42.1 ± 6.9 

2 40.1 ± 11.1 40.7 ± 21.2 18.9 ± 5.9 

10 16.3 ± 2.6 52.6 ± 22.9 45.7 ± 11.2 

30 29.0 ± 7.7 37.7 ± 7.1 66.1 ± 10.5 

60 32.2 ± 13.7 32.0 ± 19.0 53.1 ± 12.2 
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Appendix D 

Degree of Acetylation Considering Residual Acetic Acid Values  

Table 5: Average degree of acetylation (%) of sonicated and unsonicated 
samples at 16.5 (low power), 28 (medium power), and 35.2 W/cm2 (high power) 
for both dialysis treatment one and the replicate dialysis treatment two as a 
difference of hydrolyzed and nonhydrolyzed chitosan samples determined by 
method of Niola et al (1993) 
 

Low Power Medium Power High Power 

16.5 W/cm2 28 W/cm2 35.2 W/cm2 
Sonication 

Time 
Dialysis 

1 
Dialysis 

2 
Dialysis 

1 
Dialysis 

2 
Dialysis 

1 
Dialysis 

2 
0 12.1 24.8 16.3 29.0 18.0 21.8 
1 15.8 23.7 17.7 42.1 16.5 36.4 
2 11.2 24.5 19.9 33.3 17.8 13.1 

10 11.1 8.7 17.6 35.7 14.6 40.7 
30 8.7 21.9 19.1 29.2 14.7 57.5 
60 12.8 22.4 21.4 17.2 14.7 43.4 
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